Overview

SYMBOLS

Shock Absorber Sizing Examples

- a = Acceleration $(in./sec.^2)(mls^2)$
 - = Width (in.)(m)
- А = Thickness (in.)(m) В
 - = Number of cycles per hour
- С = Cylinder bore diameter (in.)(mm)
- D = Distance (in.)(m)
- E_{K} = Kinetic energy (in-lbs.)(Nm)
- = Total energy per cycle Εт
- $(in-lbs./c)(Nm/c), E_{K} + E_{W}$
- ETC= Total energy to be absorbed per hour (in-lbs./hr)(Nm/hr)
- $E_W =$ Work or drive energy (in-lbs.)(Nm)
- FD = Propelling force (lbs.)(N)
- = Shock force (lbs.)(N) Fp
- H = Height (in.)(m)
- Hp = Motor rating (hp)(kw)
 - = Length (in.)(m)
- Ρ = Operating pressure (psi)(bar)
- = Stroke of shock absorber (in.)(m) S
 - = Time (sec.)

Т

- = Torque (in-lbs.)(Nm)
- = Impact velocity (in./sec.)(m/s)
- W = Weight (lbs.)(Kg)

USEFUL FORMULAS

1. To Determine Shock Force

EΤ

- $F_{P} = \frac{1}{S \times .85}$
- 2. To Determine Impact Velocity
 - A. If there is no acceleration (V is constant) (e.g., load being V = Dpushed by hydraulic cylinder or motor driven.)
 - B. If there is acceleration. (e.g., load being pushed by air cylinder)
- 3. To Determine Propelling Force **Generated by Electric Motor**

 $F_D = 19,800 \times Hp$ $F_D = 30\ 000 \times Hp$ (metric)

4. To Determine Propelling Force of Pneumatic or Hydraulic Cylinders $F_D = .7854 \text{ x } d^2 \text{ x } P$ $F_D = 0,07854 \text{ x } d^2 \text{ x } P$ (metric)

5. Free Fall Applications

- A. Find Velocity for a Free Falling Weight:
- $V = \sqrt{772 \times H}$ $V = \sqrt{19.6 \times H}$ (metric)
- B. Kinetic Energy of Free Falling Weight: $E_{K} = W \times H$

6. Deceleration and G Load

A. To Determine Approximate G Load with a Given Stroke

$$G = \frac{F_{P} - F_{D}}{W} \quad G = \frac{F_{P} - F_{D}}{kg \times 9.81}$$
(metric)

B. To Determine the Approximate Stroke with a Given G Load (Conventional Damping Only) F. S =

NOTE: Constants are printed in **bold**.

The following examples are shown using Imperial formulas and units of measure.

Shock Absorbers EXAMPLE 1: **Vertical Free Falling Weight**

STEP 1: Application Data = 5,000 lbs. (W) Weight (H) Height = 20 in. (C) Cycles/Hr = 2

STEP 2: Calculate kinetic energy $E_{k} = W \times H$ $E_{\rm K} = 5,000 \times 20 = 100,000$ in-lbs.

Assume Model HD 2.0 x 10 is adequate (Page 15).

STEP 3: Calculate work energy $E_W = W \times S$ $E_W = 5,000 \times 10$ $E_W = 50,000$ in-lbs.

STEP 4: Calculate total energy per cycle $E_T = E_K + E_W$ $E_{T} = 100,000 + 50,000$ $E_T = 150,000 \text{ in-lbs./c}$

STEP 5: Calculate total energy per hour $E_TC = E_T \times C$ $E_TC = 150,000 \times 2$ $E_{T}C = 300,000$ in-lbs./hr

STEP 6: Calculate impact velocity and confirm selection

= **√772** x H V $=\sqrt{772 \times 20}$ V = 124 in./sec. V

Model HD 2.0 x 10 is adequate.

EXAMPLE 2: Free Moving Load Down an Inclined Plane

www.enidine.com

STEP 1: Application Data

(W) Weight = 2,000 lbs. (H) Height = 8 in. (α) Angle of incline = 30° (C) Cycles/Hr = 60

STEP 2: Calculate kinetic energy

 $E_{K} = W \times H$ $E_{K} = 2,000 \times 8$ $E_{\rm K} = 16,000$ in-lbs.

Assume Model HD 1.5 x 2 is adequate (Page 13).

STEP 3: Calculate work energy

 $F_D = W \times Sin \alpha$ $F_D = 2,000 \text{ x}.5$ $F_D = 1,000$ lbs. $E_W = F_D \times S$ $E_W = 1,000 \times 2$ $E_W = 2,000$ in-lbs.

STEP 4: Calculate total

energy per cycle $E_T = E_K + E_W$ $E_T = 16,000 + 2,000$ $E_T = 18,000 \text{ in-lbs./c}$

STEP 5: Calculate total energy per hour $E_TC = E_T \times C$ $E_{T}C = 18,000 \times 60$ $E_TC = 1,080,000$ in-lbs./hr

STEP 6: Calculate impact velocity and confirm selection

 $V = \sqrt{772 \times H}$ $V = \sqrt{772 \times 8} = 79$ in./sec.

Model HD 1.5 x 2 is adequate.

Typical Shock Absorber Applications

EXAMPLE 3: Horizontal Moving Load

STEP 1: Application Data

(W) Weight = 20,000 lbs. (V) Velocity = 20 in./sec. (C) Cycles/Hr = 4

STEP 2: Calculate kinetic energy

$$E_{K} = \frac{W}{772} \times V^{2}$$
$$E_{K} = \frac{20,000}{772} \times 20^{2}$$
$$E_{V} = 10.364 \text{ in-lbs}$$

Assume Model HD 1.5 x 2 is adequate (Page 13).

If there is no additional drive force proceed to step 4 and $E_w = 0$. If the application is driven by a cylinder, proceed to step 3a. If the application is driven by a motor proceed to step 3b.

STEP 3a: Calculate work energy:

(d) Cylinder bore diamter = 6 in. (P) Cylinder pressure = 80 psi $F_D = .7854 \times d^2 \times P$ $F_D = .7854 \times 6^2 \times 80$ psi $F_D = 2,262$ lbs.

 $E_w = F_D x S$ $E_w = 2,262 x 2$ $E_w = 4,524$ in-lbs.

STEP 3b: Calculate work energy:

(Hp) Motor Horsepower = 5 Hp $F_D = \frac{19,800 \times Hp}{V}$ $F_D = \frac{19,800 \times 5}{20}$ $F_D = 4,950$ in-lbs.

 $E_w = F_D x S$ $E_w = 4,950 x 2$ $E_w = 9,900$ in-lbs.

STEP 4: Calculate total energy per cycle Note: Using Calculations from 3a

 $E_T = E_K + E_w$ $E_T = 10,364 + 4,524$ $E_T = 14,888$ in-lbs.

STEP 5: Calculate total energy per hour

 $E_{T}C = E_{T} \times C$ $E_{T}C = 14,888 \times 4$ $E_{T}C = 59,552$ in-lbs./hr

Model HD 1.5 x 2 is adequate.

Overview

Overview

Crane A		Per Buffer
Propelling Force Crane	lbs.	
Propelling Force Trolley	lbs.	
Weight of Crane	lbs.	
Weight of Trolley	lbs.	
Distance X _{min}	in.	
Distance X _{max}	in.	
Distance Y _{min}	in.	
Distance Y _{max}	in.	
Crane Velocity	in./sec.	
Trolley Velocity	in./sec.	

Crane B		Per Buffer
Propelling Force Crane	lbs.	
Propelling Force Trolley	lbs.	
Weight of Crane	lbs.	
Weight of Trolley	lbs.	
Distance X _{min}	in.	
Distance X _{max}	in.	
Distance Y _{min}	in.	
Distance Y _{max}	in.	
Crane Velocity	in./sec.	
Trolley Velocity	in./sec.	

Crane C		Per Buffer
Propelling Force Crane	lbs.	
Propelling Force Trolley	lbs.	
Weight of Crane	lbs.	
Weight of Trolley	lbs.	
Distance X _{min}	in.	
Distance X _{max}	in.	
Distance Y _{min}	in.	
Distance Y _{max}	in.	
Crane Velocity	in./sec.	
Trolley Velocity	in./sec.	

Please note: Unless instructed otherwise, Enidine will always calculate with:

100% velocity v, and
100% propelling force F_D

	Front View
Velocity of Trolley Distance X Rail X	Weight of Trolley Total Weight of Crane Load Distance Y Rail
Plan Views	
Application 1Crane A against Solid StopVelocity: $V_r = V_A$ Impact weight per buffer: $W_D = \frac{W}{2}$	Crane A (W _A)
Application 2	
Velocity:	Crane B (W _B)
$V_r = V_A + V_B$	Mar is
Impact weight per buffer:	
$W_{\rm D} = \frac{W_{\rm A} \bullet W_{\rm B}}{W_{\rm A} + W_{\rm B}} \div 2$	Crane A (W _A)
Crane B against Crane C	
Velocity: V_ = V_P + V_c	
1 2 Impact weight per huffer:	× 11
$W_{D} = \frac{W_{B} \bullet W_{C}}{W_{B} + W_{C}}$	Crane B (W _B)
Application 4	
Crane C against Solid Stop with Buffer	
Velocity:	Ale to
$v_r = \frac{v_c}{2}$ Impact weight per buffer:	Vet T
$W_{D} = W_{C}$	
	trane ((W _C)

www.enidine.com Email: industrialsales@enidine.com Tel.: 1-800-852-8508 ext. 111

7

		Overview	
Please note that this example is not based on any particular standard. The slung load can swing freely, and is therefore not taken into account in the calculation.		Calculation Example	
Total Weight of Crane:	Weight of Crane: 837,750 lbs.		
Weight of Trolley:	99,200 lbs.		
Span:	z = 3,940 in.		
Trolley Impact Distance:	x = 3,540 in.	Given Values	
Crane Velocity:	V _{Crane} = 60 in./sec.		
Required Stroke:	24 in.		
Trolley Velocity:	V _{Trolley} = 160 in./sec.		
Required Stroke:	40 in.		
Bridge Weight per Rail = <u>crane weight_{total} - trolle</u>	/ weight		
2 Bridge Weight per Rail = 8 <u>37,750 lbs 99,200 lbs.</u> = 369.275 lbs.		Determination of the	
Z W _{Dmax} = Bridge Weight per Rail + Trolley Weight	in Impact Position	Maximum Impact Weight W _{Dmax}	
W _{Dmax} = 369,275 lbs. + (99,200 lbs. • 3,540 in.		per Butter	
3,940 in. W _{Dmax} = 458,404 lbs.			
$E_{K} = \frac{W_{Dmax}}{7720} \bullet V_{r}^{2}$			
	V = V. Application 1		
$E_{\rm K} = \frac{458,404 \text{ lbs.}}{772} \bullet (60 \text{ in./sec.})^2$		Determine Size	
	$E_{K} = Kinetic Energy$	of Shock Absorber for Crane	
$E_{\rm K} = 2,137,635$ in-lbs.	$\eta = \text{Efficiency}$		
Selecting for required 24-inch stroke:	4 796 lbs - E - E		
The Stork 24, maximum shock force (a. 10	$r_s = \frac{L_K}{S \bullet \eta}$		
W _D = Trolley Weight per Shock Absorber			
$W_{\rm D} = \frac{99,200 \text{ lbs}}{2}.$			
$W_{\rm D} = 49,600 \rm{lbs.}$		Determine Size	
$E_{K} = W_{D}$	$V_r = V_A$ Application 1	of Shock Absorber	
772 • Vr ²		ior money	
$E_{\rm K} = \frac{49,600 \text{ lbs.}}{772} \bullet (160 \text{ in./sec.})^2$			
E _K = 1,644,767 in-lbs.			
Selecting for required 40-inch stroke:			
HD 4.0 x 40, maximum shock force ca. 48	$,376 \text{ lbs.} = \text{F}_{\text{s}} = \text{E}_{\text{K}}$		