Step 1: Application Data

- **(W)** Weight = 2,000 lbs.
- **(H)** Height = 8 in.
- **(α)** Angle of incline = 30˚
- **(C)** Cycles/Hr = 60

Step 2: Calculate kinetic energy

$$E_k = W \times H$$

$$E_k = 2,000 \times 8$$

$$E_k = 16,000 \text{ in-lbs.}$$

Assume Model HD 1.5 x 2 is adequate (Page 13).

Step 3: Calculate work energy

$$E_W = W \times \sin \alpha$$

$$E_W = 2,000 \times 0.5$$

$$E_W = 1,000 \text{ lbs.}$$

Step 4: Calculate total energy per cycle

$$E_T = E_k + E_W$$

$$E_T = 16,000 + 1,000$$

$$E_T = 17,000 \text{ in-lbs./c}$$

Step 5: Calculate total energy per hour

$$E_{TC} = E_T \times C$$

$$E_{TC} = 17,000 \times 60$$

$$E_{TC} = 1,020,000 \text{ in-lbs./hr}$$

Step 6: Calculate impact velocity and confirm selection

$$V = \sqrt{\frac{2 \times E_T}{C}}$$

$$V = \sqrt{17,000 \times 60}$$

$$V = 124 \text{ in./sec.}$$

Model HD 1.5 x 2 is adequate.
Shock Absorber Sizing Examples

Overview

- **STEP 1**: Application Data
 - (W) Weight = 20,000 lbs.
 - (V) Velocity = 20 in./sec.
 - (C) Cycles/Hr = 4

- **STEP 2**: Calculate kinetic energy
 \[E_K = \frac{W \times V^2}{772} \]
 \[E_K = \frac{20,000 \times 20^2}{772} \]
 \[E_K = 10,364 \text{ in-lbs.} \]

 Assume Model HD 1.5 x 2 is adequate (Page 13).

 If there is no additional drive force, proceed to step 4 and \(E_w = 0 \). If the application is driven by a cylinder, proceed to step 3a. If the application is driven by a motor proceed to step 3b.

- **STEP 3a**: Calculate work energy:
 - (d) Cylinder bore diameter = 6 in.
 - (P) Cylinder pressure = 80 psi
 \[F_D = 0.7854 \times d^2 \times P \]
 \[F_D = 0.7854 \times 6^2 \times 80 \text{ psi} \]
 \[F_D = 2,262 \text{ lbs.} \]
 \[E_w = F_D \times S \]
 \[E_w = 2,262 \times 2 \]
 \[E_w = 4,524 \text{ in-lbs.} \]

- **STEP 3b**: Calculate work energy:
 - (Hp) Motor Horsepower = 5 Hp
 \[F_D = 19,800 \times \frac{\text{Hp}}{20} \]
 \[F_D = 19,800 \times 5 \]
 \[F_D = 4,950 \text{ in-lbs.} \]
 \[E_w = F_D \times S \]
 \[E_w = 4,950 \times 2 \]
 \[E_w = 9,900 \text{ in-lbs.} \]

- **STEP 4**: Calculate total energy per cycle
 \[E_T = E_K + E_w \]
 \[E_T = 10,364 + 4,524 \]
 \[E_T = 14,888 \text{ in-lbs.} \]

- **STEP 5**: Calculate total energy per hour
 \[E_T \times C = E_T \times C \]
 \[E_T \times C = 14,888 \times 4 \]
 \[E_T \times C = 59,552 \text{ in-lbs. /hr} \]

Model HD 1.5 x 2 is adequate.

Example 3: Horizontal Moving Load
Overview

Please note:

Unless instructed otherwise, Enidine will always calculate with:
- 100% velocity v_A and
- 100% propelling force F_D

Application 1

Crane A against Solid Stop

Velocity:

$$V_r = V_A$$

Impact weight per buffer:

$$W_I = \frac{W}{2}$$

Application 2

Crane A against Crane B

Velocity:

$$V_r = V_A + V_B$$

Impact weight per buffer:

$$W_I = \frac{W_A + W_B}{2}$$

Application 3

Crane B against Crane C

Velocity:

$$V_r = V_B + V_C$$

Impact weight per buffer:

$$W_I = \frac{W_B + W_C}{2}$$

Application 4

Crane C against Solid Stop with Buffer

Velocity:

$$V_r = \frac{V_C}{2}$$

Impact weight per buffer:

$$W_I = W_C$$
Shock Absorber Sizing Examples

Typical Shock Absorber and Crane Applications

Please note that this example is not based on any particular standard. The slung load can swing freely, and is therefore not taken into account in the calculation.

<table>
<thead>
<tr>
<th>Total Weight of Crane:</th>
<th>837,750 lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of Trolley:</td>
<td>99,200 lbs.</td>
</tr>
<tr>
<td>Span:</td>
<td>z = 3,940 in.</td>
</tr>
<tr>
<td>Trolley Impact Distance:</td>
<td>x = 3,540 in.</td>
</tr>
<tr>
<td>Crane Velocity:</td>
<td>V_{Crane} = 60 in./sec.</td>
</tr>
<tr>
<td>Required Stroke:</td>
<td>24 in.</td>
</tr>
<tr>
<td>Trolley Velocity:</td>
<td>V_{Trolley} = 160 in./sec.</td>
</tr>
<tr>
<td>Required Stroke:</td>
<td>40 in.</td>
</tr>
</tbody>
</table>

- **Bridge Weight per Rail** = Crane weight total - Trolley weight

 \[
 \text{Bridge Weight per Rail} = \frac{837,750 \text{ lbs.} - 99,200 \text{ lbs.}}{2} = \frac{369,275 \text{ lbs.}}{2}
 \]

- **WDmax** = Bridge Weight per Rail + Trolley Weight in Impact Position

 \[
 \text{WDmax} = \frac{369,275 \text{ lbs.} + (99,200 \text{ lbs.} \times 3,540 \text{ in.})}{3,940 \text{ in.}}
 \]

 \[
 \text{WDmax} = 458,404 \text{ lbs.}
 \]

- **EK** = WDmax \times \frac{V_r^2}{2}

 \[
 \text{EK} = 458,404 \text{ lbs.} \times \frac{(60 \text{ in./sec.})^2}{2}
 \]

 \[
 \text{EK} = 2,137,635 \text{ in-lbs.}
 \]

 Selecting for required 24-inch stroke:

 \[
 \text{HD} 5.0 \times 24, \text{ maximum shock force ca. 104,786 lbs} = F_s = \frac{\text{EK}}{\eta}
 \]

 \[
 \text{WD} = \text{Trolley Weight per Shock Absorber}
 \]

 \[
 \text{WD} = \frac{99,200 \text{ lbs.}}{2} = 49,600 \text{ lbs.}
 \]

 \[
 \text{E}_k = \frac{\text{WD}}{772} \times V_r^2
 \]

 \[
 \text{E}_k = 49,600 \text{ lbs.} \times \frac{(60 \text{ in./sec.})^2}{772}
 \]

 \[
 \text{E}_k = 2,137,635 \text{ in-lbs.}
 \]

 Selecting for required 40-inch stroke:

 \[
 \text{HD} 4.0 \times 40, \text{ maximum shock force ca. 48,376 lbs} = F_s = \frac{\text{EK}}{\eta}
 \]

 \[
 \text{WD} = \text{Trolley Weight per Shock Absorber}
 \]

 \[
 \text{WD} = \frac{99,200 \text{ lbs.}}{2} = 49,600 \text{ lbs.}
 \]

 \[
 \text{E}_k = \frac{\text{WD}}{772} \times V_r^2
 \]

 \[
 \text{E}_k = 49,600 \text{ lbs.} \times \frac{(160 \text{ in./sec.})^2}{772}
 \]

 \[
 \text{E}_k = 1,644,767 \text{ in-lbs.}
 \]

 Selecting for required 40-inch stroke: